4 ECTS credits
110 u studietijd

Aanbieding 1 met studiegidsnummer 4004513EER voor alle studenten in het 1e semester met een verdiepend master niveau.

Semester
1e semester
Inschrijving onder examencontract
Mogelijk
Beoordelingsvoet
Beoordeling (0 tot 20)
2e zittijd mogelijk
Ja
Onderwijstaal
Nederlands
Onder samenwerkingsakkoord
Onder interuniversitair akkoord mbt. opleiding
Faculteit
Faculteit Ingenieurswetenschappen
Verantwoordelijke vakgroep
Toegepaste Natuurkunde en Fotonica
Onderwijsteam
Guy Verschaffelt
Nathalie Vermeulen (titularis)
Geert Morthier
Onderdelen en contacturen
36 contacturen Hoorcollege
12 contacturen Werkcolleges, practica en oefeningen
Inhoud

CHAPTER 1: THE BASICS

  • Basic laser physics: Introduction; Absorption; Spontaneous and stimulated emission of light; Amplification; Basic laser setup; Gain, saturation and line broadening
  • Basic properties of laser light: One direction; One frequency; One phase; Laser light is intense

CHAPTER 2: LASER THEORY

  • Introduction: The need for more than two energy levels; Rate equations for a 4-level laser
  • Continuous-wave (cw) laser action: Output power in cw regime; Influence of experimental parameters; Transients              
  • Pulsed laser action: Introduction; Gain switching; Q-switching; Cavity dumping; Mode-locking; Ultra-short pulses

CHAPTER 3: LASER RESONATORS AND THEIR MODES

  • Introduction
  • Modes in a confocal resonator: Wave fronts; Frequencies; Transverse light distribution
  • Modes in a non-confocal resonator: Stability criteria; Frequencies
  • Modes in a waveguide resonator: Modes in a fiber waveguide resonator; Modes in an on-chip waveguide resonator
  • Modes in a (free-space/waveguide) ring resonator
  • Modes in a real laser: Line broadening; Selection of modes
  • Saturation and hole-burning effects: Spatial hole burning; Spectral hole burning

CHAPTER 4: LASER BEAMS

  • Gaussian beams: Basic Formulas; Propagation; Transformation by a lens and focusing; Transmission through a circular aperture
  • Multimode beams: Introduction; Spot radius W for a multimode beam; Beam Propagation Factor M; A more theoretical approach; Practical use

CHAPTER 5: TYPES OF LASERS

  • General introduction
  • Gas lasers: General; Neutral gas (He-Ne); Ionized gas (argon ion); Molecules (CO2); Excimer lasers (ArF)
  • Liquid lasers (dye laser)
  • Solid-state lasers: General; Rare-earth-doped lasers (Nd:YAG and Er:fiber); Transition-metal-doped lasers (Ti: Sapphire); Changing the wavelength by optical nonlinear effects
  • Other lasing mechanisms: Raman lasing

CHAPTER 6: LASER DIODES:OPERATION PRINCIPLES

  • Geometry and important characteristics
  • Material aspects: heterostructures, gain and absorption, low dimensional materials,
  • Gain saturation
  • Fabry-Perot laser diodes: cavity resonance
  • Fabry-Perot laser diodes: rate equations and dynamic operation
  • Noise: power spectrum and phase noise, injection locking

CHAPTER 7: OVERVIEW OF SEMICONDUCTOR LASER TYPES

  • Distributed Feedback and Distributed Bragg Reflector laser diodes
  • Vertical Cavity Surface Emitting Laser diodes
  • Tunable laser diodes
  • Quantum cascade lasers
  • Laser diode packaging

Chapters 1 to 5 are taught by N. Vermeulen and chapters 6-7 are taught by G. Verschaffelt at VUB. 

Studiemateriaal
Digitaal cursusmateriaal (Vereist) : Lasers, Syllabus, Nathalie Vermeulen, Guy Verschaffelt en Geert Morthier
Handboek (Aanbevolen) : Principles of Lasers, O. Svelto, 5de, Springer, 9781489977137, 2016
Bijkomende info

The course material consist of:

- Lecture notes (syllabus) + slides (English)

- Exercise sheets are provided during the lectures

 

Optional handbook: O. Svelto, Principles of Lasers (5th edition), Springer, New York, 2016.

Leerresultaten

Algemene competenties

CONTEXT EN ALGEMEEN DOEL:

Since their invention in 1960, lasers have become the most important light sources in optics and photonics, and are present everywhere in modern society nowadays. For example, worldwide telecommunication is based on the transmission of laser signals through optical fibers, and today’s manufacturing industry heavily relies on the use of high-irradiance laser beams. Other application domains include medicine, art restoration, remote sensing, biological spectroscopy, and many others. It is the general aim of this course that the students will become able to explain and analyse laser properties and laser-related concepts, that they learn to construct and analyse the mathematical description of important concepts, and that they are also able to apply the latter to practical examples on the use of lasers.

EINDCOMPETENTIES:

The targeted end competences can be categorized as follows:

  • The students are able to name, describe and explain laser properties and concepts, including:

spontaneous and stimulated emission, absorption, coherence, heterostructures for efficient light generation, light propagation in a resonator, continuous-wave and pulsed laser action, line broadening, saturation, Gaussian laser beams, operation and applications of different laser types (gas lasers, liquid lasers, solid-state lasers, semiconductor lasers), laser dynamics, noise, Bragg gratings, wavelength tuning, laser packaging.

  • The students have the ability to derive from first principles the mathematical description for laser-related concepts, including:

rate equations describing the general operation principle of laser action and formulas for continuous-wave/pulsed laser operation, formulas for the modes in different types of resonators with different stability criteria, equations for propagation and transformation of Gaussian and multimode laser beams in optical systems, laser rate equations for different types of semiconductor lasers, formulas describing the gain and complex refractive index in semiconductor materials, description of the linewidth of lasers, formulas for the dynamic behaviour of lasers.

  • The students know how to explain and analyse the above-enlisted mathematical descriptions for laser-related concepts.
  • The students are able to apply the mathematical descriptions to practical examples and to use these descriptions to solve practical problems.

EXAMEN:

The students are evaluated according to the above-enlisted end competences in an oral exam with written preparation (open questions, closed book)

Beoordelingsinformatie

De beoordeling bestaat uit volgende opdrachtcategorieën:
Examen Andere bepaalt 100% van het eindcijfer

Binnen de categorie Examen Andere dient men volgende opdrachten af te werken:

  • ex open vragen gesl boek met een wegingsfactor 1 en aldus 100% van het totale eindcijfer.

    Toelichting: Mondelinge ondervraging met schriftelijke voorbereiding; open vragen, geslot boek

Aanvullende info mbt evaluatie

Mondeling examen met schriftelijke voorbereiding (open vragen, gesloten boek)

The part of the course taught by N. Vermeulen and the part of the course taught by G. Verschaffelt  are examined together.

Partial transfer of the score obtained for an individual part to the 2nd session or the next academic year is not allowed.

Toegestane onvoldoende
Kijk in het aanvullend OER van je faculteit na of een toegestane onvoldoende mogelijk is voor dit opleidingsonderdeel.

Academische context

Deze aanbieding maakt deel uit van de volgende studieplannen:
Master in de ingenieurswetenschappen: elektronica en informatietechnologie: Standaard traject
Master in de ingenieurswetenschappen: fotonica: Standaard traject