4 ECTS credits
100 h study time

Offer 1 with catalog number 4017332FNR for all students in the 1st semester at a (F) Master - specialised level.

Semester
1st semester
Enrollment based on exam contract
Impossible
Grading method
Grading (scale from 0 to 20)
Can retake in second session
Yes
Taught in
English
Partnership Agreement
Under interuniversity agreement for degree program
Faculty
Faculty of Engineering
Department
Applied Physics and Photonics
Educational team
Michael Vervaeke (course titular)
Activities and contact hours
24 contact hours Lecture
18 contact hours Seminar, Exercises or Practicals
Course Content
An important goal of most optical systems is to form an image of an object. Telescopes, microscopes, cameras and lens systems for lithography are amongst the many examples. This course gives insight into the basic principles to design, evaluate and optimize image forming optical systems. Due to the prevalence of micro-optics in many applications we will also touch upon diffraction and diffractive imaging elements. We will also hightlight aspects of fabrication and tolerancing because ever increasing demands on the image quality and miniaturization of optical systems pushes designers to take up those aspects as early as in the conceptual design phase.
Course material
Handbook (Recommended) : Introduction to optics, F. PEDROTTI, L.M. PEDROTTI, L.S. PEDROTTI, 3de, Prentice Hall, 9781292022567, 2013
Digital course material (Required) : Design of Refractive and Diffractive Optical Imaging Systems, Slide hand-outs (pdf), Pointcarré
Additional info
The course themes are (this is not  corresponding with the actual chapters nor with the exact course content per session):
1. Simple optical instruments
2. Imaging in general
3. Paraxial imaging
4. Stops, pupils and windows
5. Geometrical aberrations
6. Chromatic aberrations
7. Quantitative Image quality evaluation
8. Tolerancing and fabrication of imaging optics
9. Basic theory of Diffractive Optical Elements
10. Diffractive Components
11. Design of Diffractive Components

The contents and notes can be updated interactively and the most recent versions and announcement of new versions will be provided through pointcarre.
Concepts will be clarified either through live-demonstrations or through optical simulator examples.

Learning Outcomes

General Competencies

11 * maFOT/EMSP1.6 De student kan eenvoudige optische instrumenten beschrijven
21 *   De student kan de algemene principes van beeldvorming beschrijven
31 **   De student kan de matrixformulatie van paraxiale beeldvorming afleiden
32 **   De student kan de 6 cardinale punten van de matrixformulatie van paraxiale beeldvorming afleiden
33 **   De student kan de grootte en positie van een af te beelden object voorspellen
41 *   De student kan de pupil, stop en venster in een optische systeem herkennen
42 *** maFOT/EMSP6.2 ; maGEN2.3 ; maGEN1.1 ; maFOT/EMSP1.1 De student kan de matrixformulatie van paraxiale beeldvorming voor de bepaling van grootte en positie van aperturen en vensters in object en beeldvlak toepassen
51 *   De student kan de 5 geometrische aberraties, hun gevolgen voor de beeldvorming en manieren om de aberraties tegen te gaan beschrijven
52 *   De student kan de belangrijkste eigenschappen en verschillen van de Seidel en Zernike beschrijving van aberraties beschrijven
53 **   De student kan de golffrontvergelijking van sferische aberratie afleiden
54 **   De student kan van een gegeven golffrontvergelijking van een aberratie de straalaberratie afleiden
55 *   De student kan het balanceren van aberraties bij aplanatische optieken beschrijven
56 *** MaGEN6.4 ; maGEN2.3 De student kan de aberraties van een gegeven optisch systeem evalueren
61 *   De student kan de chromatische aberratie, het gevolg voor de beeldvorming en de manieren om deze aberratie tegen te gaan, beschrijven
62 * maFOT/EMSP1.2 De student kan de twee hoofdtypes glasmaterialen in de glaskaart beschrijven
63 **   De student kan de ontwerpvergelijking van een achromatisch doublet afleiden
71 *   De student kan de modulatie transferfunctie voor beeldkwaliteitsevaluatie beschrijven
72 *   De student kan het gebruik van een spotdiagramma voor beeldkwaliteit kwantificatie beschrijven
73 **   De student kan de diffractie gelimiteerde beeldkwaliteit uitleggen aan de hand van een voorbeeld
74 *** MaGEN6.4 De student kan de beeldkwaliteit van een gegeven optisch systeem evalueren
75 *** maFOT/EMSP6.4 ; maGEN3.2 ; maGEN2.3 ; maGEN1.1 ; maFOT/EMSP1.1 De student kan de aanpassingen aan een gegeven optisch systeem voor de verbetering van de beeldkwaliteit ontwerpen
81 * maFOT/EMSP1.8 De student kan de methodes voor de vervaardiging van optieken beschrijven
82 ** maFOT/EMSP1.8 ; maGEN2.3 De student kan de best passende vergelijking om een lensvorm te beschrijven
83 *** maFOT/EMSP1.8 ; maGEN2.3 De student kan een vervaardigingsmethode voor een opgegeven optisch systeem beoordelen
84 ** maFOT/EMSP1.7 ; maGEN2.3 De student kan de verschillende methodes voor tolerantiebepaling en hun voor- en nadelen beargumenteren
91 *   De student kan de belangrijke categorieen van diffractieve elementen beschrijven
92 **   De student kan de vergelijking voor de verre veld lineare diffractie aan een rooster afleiden
93 *** maFOT/EMSP6.2 ; maGEN2.3 De student kan de concepten van Fourier transformatie en convolutie op verre veld diffractie van 2 dimensionale roosters toepassen
94 *** maFOT/EMSP6.4 ; maGEN3.2 ; maGEN2.3 De student kan het concept van een hybride lens toepassen
       
11 * maFOT/EMSP1.6 The student is able to describe simple optical instruments
21 *   The student is able to describe the general principles of imaging
31 **   The student is able to derive the matrixformulation of paraxial imaging
32 **   The student is able to derive the 6 cardinal points of the matrixformulation of paraxial imaging
33 **   The student is able to predict the size and position of an object's image
41 *   The student is able to recognize pupils, stops and windows of an optical system
42 *** maFOT/EMSP6.2 ; maGEN2.3 ; maGEN1.1 ; maFOT/EMSP1.1 The student is able to apply the matrixformulation of paraxial imaging on the determination of size and position of apertures and windows in object and image space
51 *   The student is able to describe the 5 geometric aberrations, the consequences for image formation and methods to counteract the aberrations
52 *   The student is able to describe the properties and differences of the Seidel and Zernike aberration description
53 **   The student is able to derive the wavefront aberration equation of spherical aberration
54 **   The student is able to derive the ray aberration equation of a given wavefront aberration
55 *   The student is able to describe the balancing of aberrations for aplanatic optics
56 *** MaGEN6.4 ; maGEN2.3 The student is able to evaluate the aberrations of a given optical system
61 *   The student is able to describe chromatic aberration, the consequence for image formation and methods to counteract this aberration
62 * maFOT/EMSP1.2 The student is able to describe the two main glass materials from the glass chart
63 **   The student is able to derive the design equation of an achromatic doublet
71 *   The student is able to describe the modulation transfer function for image quality evaluation
72 *   The student is able to describe the usage of a spotdiagram to quantify image quality
73 **   The student is able to explain diffraction limited image quality
74 *** MaGEN6.4 The student is able to evaluate the image quality of a given optical system
75 *** maFOT/EMSP6.4 ; maGEN3.2 ; maGEN2.3 ; maGEN1.1 ; maFOT/EMSP1.1 The student is able to design an improved optical system to enhance the image quality
81 * maFOT/EMSP1.8 The student is able to describe fabrication methods of optics
82 ** maFOT/EMSP1.8 ; maGEN2.3 The student is able to evaluate the best fitting equation to a lens shape
83 *** maFOT/EMSP1.8 ; maGEN2.3 The student is able to evaluate a fabrication method for a given optical system
84 ** maFOT/EMSP1.7 ; maGEN2.3 The student is able to argue the various methods for tolerance synthesis and the advantages and disadvantages of each method
91 *   The student is able to describe the important categories of diffractive optical elements
92 **   The student is able to derive the equation for far-field linear diffraction of a raster
93 *** maFOT/EMSP6.2 ; maGEN2.3 The student is able to apply the concepts of Fourier transforms and convolution for the far-field diffraction of 2 dimensional grating
94 *** maFOT/EMSP6.4 ; maGEN3.2 ; maGEN2.3 The student is able to apply the concept of a hybrid lens

 

Grading

The final grade is composed based on the following categories:
Oral Exam determines 100% of the final mark.

Within the Oral Exam category, the following assignments need to be completed:

  • Oral exam with a relative weight of 100 which comprises 100% of the final mark.

    Note: The exam is an oral exam with written preparation (closed book).

Additional info regarding evaluation
The examination consists minimally of a question to evaluate knowledge and a question on insight of a theoretical concept and a synthesis/analysis of a design challenge based on a demonstration or an example using simulation software. 
 
Students are expected to fully master geometrical raytracing by sketching with pen and ruler on paper in order to determing the position and size of images through lens systems.
 
maGEN4.1 ; maGN5.1 : Peer learning – peer assessment applied during the course but not evaluated for the exam.
maGEN4.1 ; maGN5.1 : Interactive discussions amongst students about design challenges organised during the contacthours are not used for evaluation at the exam.  
Allowed unsatisfactory mark
The supplementary Teaching and Examination Regulations of your faculty stipulate whether an allowed unsatisfactory mark for this programme unit is permitted.

Academic context

This offer is part of the following study plans:
Master of Photonics Engineering: On campus traject
Master of Photonics Engineering: Online/Digital traject