6 ECTS credits
160 u studietijd

Aanbieding 1 met studiegidsnummer 4011284ENR voor alle studenten in het 2e semester met een verdiepend master niveau.

Semester
2e semester
Inschrijving onder examencontract
Niet mogelijk
Beoordelingsvoet
Beoordeling (0 tot 20)
2e zittijd mogelijk
Ja
Onderwijstaal
Engels
Onder samenwerkingsakkoord
Onder interuniversitair akkoord mbt. opleiding
Faculteit
Faculteit Ingenieurswetenschappen
Verantwoordelijke vakgroep
Toegepaste Natuurkunde en Fotonica
Onderwijsteam
Jürgen Van Erps (titularis)
Geert Morthier
Externe Docenten
Geert Morthier
Onderdelen en contacturen
36 contacturen Hoorcollege
36 contacturen Werkcolleges, practica en oefeningen
Inhoud

This course offers an introduction to optical communication systems, and covers a broad range of topics with special attention for the practical perspective of these systems. Physical understanding of the components and systems prepares students for designing optical links, including making design trade-offs in the practical implementation of those systems. After an introduction to the basic concepts of optical communications with an historical perspective, this course covers propagation in optical fibers, including attenuation and nonlinear effects, as well as the fabrication of optical fibers. It also covers chromatic and waveguide dispersion in optical fibers and dispersion compensation techniques. Additional topics include optical transmitters such as semiconductor lasers and LEDs, photodetectors (PIN, APD) and optical amplifiers such as Erbium-doped fiber amplifiers and semiconductor optical amplifiers. Students also gain an understanding of performance measures such as bit error ratio (BER), eye diagram, receiver sensitivity, optical power budget, as well as of optical network architectures and topologies. Finally, they gain insight in modulation and multiplexing techniques (WDM systems, WDM components, optical TDM). In the hands-on part, students learn how to design a long-haul telecom link using state-of-the-art simulation tools.

Studiemateriaal
Digitaal cursusmateriaal (Vereist) : Optical Communication Systems, J. Van Erps
Digitaal cursusmateriaal (Vereist) : Slides used during the course, J. Van Erps
Handboek (Aanbevolen) : Fibre-Optic Communication Systems, Govind P. Agrawal, 5ed, Wiley Interscience, 9781119737360, 2021
Bijkomende info

Lecturing team:

VUB: Prof. Jürgen Van Erps

UGent: Prof. Geert Morthier

Lecture (HOC): 36 hours

This includes guest lecture(s) by speaker(s) from industry, during which attendance is compulsory. 

Tutorials and practical exercises (WPO): 16 hours

Attendance is compulsory. During these practical sessions, the operation of two commercially available state-of-the-art simulation software tools will be explained and a project assignment will be given.

Independent learning (ZELF): 108 hours.

The individual project assignment consists of the design of a long-haul link using the above-mentioned simulation tools (40 hours). The project files and a written report on the project should be handed in one week before the exam.   
 

 

Leerresultaten

Algemene competenties

1.Aims and objectives:

Driven by the relentless increase in the demand for bandwidth, optical fiber communications have become ubiquitous for long-haul telecommunications. Therefore, the student should understand the basics of light propagation through optical fibers, and how these fibers can be fabricated and used as a fundamental building block in optical networks, together with optical transmitters, optical amplifiers and optical receivers. This should allow the student to understand the operation of optical networks, as well as enable them to design long-haul optical telecom systems.

 
2.Competences and Exam requirements:
The students have to prove that they master the principles of optical fiber networks, including e.g. attenuation, dispersion and nonlinear effects in optical fibers, how to mitigate those effects, how to make an optical power budget, how to choose the appropriate photodetector, and describe the operation of different types of optical amplifiers. In addition, the student should show insight in multiplexing techniques such as wavelength division multiplexing (WDM), the required components to realize such WDM networks, understand network topologies and performance monitoring of optical networks (through e.g. the eye diagram and the bit error rate).

Finally, the student should be able to design a point-to-point long-haul optical telecom link with dedicated commercial software packages (RSoft OptSim, Lumerical MODE Solutions) and show that they are able to find a cost-effective design solution by optimizing the interplay between attenuation, dispersion and nonlinear effects. After an in-depth introduction to the software tools, the students will receive a project assignment for which they have to make a written report describing their optical link, its performance, and the most important design choices they’ve made.

In conclusion, this course contributes to the following competences:
- Knowing and understanding the main components and system concepts that are used in optical communication.
- Apply Computer Aided Engineering (CAE) tools in a creative and target-oriented way to design long-haul optical communication links.
- Choose the most appropriate design and test methods for optical communication systems (and their components), understand their theoretical background and apply them accurately. This also includes the ability the correctly interpret the datasheet of the most commonly used optical communication components.
- Understand non-optical aspects of optical communication systems, such as electronics (modulation schemes, signal-to-noise ratio, performance monitoring, etc).
- Have an insight in the main evolutions of fundamental research and the recent innovation trends in the field of optical telecommunication. 

 

Beoordelingsinformatie

De beoordeling bestaat uit volgende opdrachtcategorieën:
Examen Mondeling bepaalt 100% van het eindcijfer

Binnen de categorie Examen Mondeling dient men volgende opdrachten af te werken:

  • mondeling examen met een wegingsfactor 1 en aldus 100% van het totale eindcijfer.

    Toelichting: De student krijgt tijdens een mondeling examen –met schriftelijke voorbereiding– open vragen over het theoretisch gedeelte van de cursus. Voor de schriftelijke voorbereiding is het gebruik van cursusmateriaal NIET toegestaan. Tijdens het mondeling examen krijgt de student ook vragen over het praktische gedeelte van de cursus, in het bijzonder over het design van een optische telecom link, vertrekkend vanuit het projectverslag dat de student 1 week voor het examen heeft ingediend en tenslotte krijgt de student een aantal hands-on vragen over de software tools die gebruikt werden tijdens de WPO’s en voor het projectwerk.

Aanvullende info mbt evaluatie

The examination consists of an oral exam with written preparation (closed book). 

The grading of the oral exam consists of:
50% theory part
50% project assignment (which is a combined score of the written report and the oral exam)

Toegestane onvoldoende
Kijk in het aanvullend OER van je faculteit na of een toegestane onvoldoende mogelijk is voor dit opleidingsonderdeel.

Academische context

Deze aanbieding maakt deel uit van de volgende studieplannen:
Master of Photonics Engineering: On campus traject (enkel aangeboden in het Engels)
Master of Photonics Engineering: Online/Digital traject (enkel aangeboden in het Engels)