4 ECTS credits
110 u studietijd
Aanbieding 1 met studiegidsnummer 4016340ENR voor alle studenten in het 2e semester met een verdiepend master niveau.
Link to ULB course sheet: MECA-Y502
This course describes basic concepts and techniques for the analysis and design of a number of advanced model based controllers: amongst others robust controllers (H-infinity), internal model controllers, and feedforward controllers. To limit the complexity of the maths, the course is limited to the simplest class of systems: linear single input single output systems. Moreover, the course does not put the emphasis on maths but on the hands on experience: design, implementation, and critical evaluation of the advanced controllers. Therefore the course also provides practical insight that is very useful to design and implement the controllers.
Collocated versus non-collocated control
- basics concepts of structure dynamics
- pros and cons of collocated control
- alternating poles and zeros close to the imaginary axis
- robust SISO control via root locus
- non-collocated control
Feedback control theory: stability, robustness, design goals
- 1-degree of freedom (DOF) and 2-DOF controllers
- closed loop stability
- robustness
- design using frequency response functions: sensitivity and complementary sensitivity functions
- loop shaping
- performance limits
Internal modal control
- basics and structure of internal model based controllers
- 1-DOF internal model controllers (IMC)
- application of IMC design and link with the design of PID controllers
- 2-DOF IMC
- application of IMC: Smith predictor for systems with a significant delay
Tracking control
- adding a reference input to the control scheme
- influence of this reference input on the design of the state variable estimator
- basics of tracking control
- design of a feedforward loop for non-minimum phase systems: zero phase error tracking control
Uncertainty models and robustness
- parametric robustness analysis
- basic perturbation model
- "small gain" theorem
- robustness of the stability of feedback systems
- robustness analysis via structured singular values
- combination of robustness of stability and performance
- design of H-infinity controllers: mixed sensitivity, choice weighting functions, use of Matlab
-Transparencies used during the course. They contain enough details to be used as study material.
Complementary study material:
- references mentioned in the transparencies (papers, books, ...)
- G.F. Franklin, J.D. Powell, and A. Emami-Naeini (2002). Feedback control of dynamic systems, Fourth Edition, Upper Saddle river: Addison-Wesley.
- S. Skogestad, and I. Postlethwaite (2003). Multi-variable feedback control : analysis and design: Chichester: John Wiley and Sons.
AIMS AND OBJECTIVES
Acquiring practical knowledge about advanced control of dynamic systems
FINAL REQUIREMENTS
Skills:
- design of (robust) model based controllers with accurate tracking properties
- computer aided identification and design of controllers, simulation of systems and controllers (Matlab Simulink)
Attitudes:
- keep the importance of the control objective in mind in each step of the design
- critical interpretation of the experimental and simulation results
De beoordeling bestaat uit volgende opdrachtcategorieën:
Examen Mondeling bepaalt 100% van het eindcijfer
Binnen de categorie Examen Mondeling dient men volgende opdrachten af te werken:
Link to ULB course sheet: MECA-Y502
Project in groups of 2 or 3 students covering the whole design cycle of a controller: design and elaboration of identification experiments; and choice, design, implementation, and validation of a controller.
Written and oral presentation of the project (transparencies may serve as written report).
The projects start at the beginning of the semester.
Presentation of the project at the end of the semester or during the examination period.
Deze aanbieding maakt deel uit van de volgende studieplannen:
Master in de ingenieurswetenschappen: werktuigkunde-elektrotechniek: robotica en mechanische constructie
Master of Electromechanical Engineering: Robotics and Mechanical Construction (enkel aangeboden in het Engels)
Master of Electrical Engineering: Standaard traject BRUFACE J (enkel aangeboden in het Engels)