3 ECTS credits
80 u studietijd

Aanbieding 1 met studiegidsnummer 4017020ENR voor alle studenten in het 2e semester met een verdiepend master niveau.

Semester
2e semester
Inschrijving onder examencontract
Niet mogelijk
Beoordelingsvoet
Beoordeling (0 tot 20)
2e zittijd mogelijk
Ja
Onderwijstaal
Engels
Onder samenwerkingsakkoord
Onder interuniversitair akkoord mbt. opleiding
Faculteit
Faculteit Ingenieurswetenschappen
Verantwoordelijke vakgroep
Elektriciteit
Externe partnerinstelling(en)
Université libre de Bruxelles
Onderwijsteam
Michel Kinnaert (titularis)
Onderdelen en contacturen
18 contacturen Hoorcollege
18 contacturen Werkcolleges, practica en oefeningen
Inhoud

The course aims at mastering the basic tools for the design of model based systems for fault detection and isolation.  The first part deals with the generation of fault indicators, also called residuals.  The so-called parity space approach and the observer-based approach are successively developed in a deterministic framework and in a stochastic framework.  The second part consists of the processing of the residuals to detect and isolate possible faults. To this end, statistical change detection/isolation algorithms are studied.  Finally the use of parameter estimation methods is considered for fault detection.

The valid fiche can be found at the following link:  MATH-H503
Change the language to English in the dropdown menu on top of the page.

 

Studiemateriaal
Digitaal cursusmateriaal (Vereist) :
Bijkomende info

Lectures and practical sessions are alternating, so that the students can directly implement the methods that have been presented in simulation on various case studies.

Leerresultaten

Algemene competenties

The students

- are able to design and implement the different parts of a diagnosis system (or a fault detection and isolation system)

- understand the hypothesis behind each method

- understand how to combine methods to design a complete diagnosis system

- are able to validate in a systematic way a software code involving stochastic processes

- are able to analyse and report in a critical way their simulation results

This course contributes to the following programme outcomes of the Master in Electronics and Information Technology Engineering:

The Master in Engineering Sciences has in-depth knowledge and understanding of
3. the advanced methods and theories to schematize and model complex problems or processes

The Master in Engineering Sciences can
4. reformulate complex engineering problems in order to solve them (simplifying assumptions, reducing complexity)
6. correctly report on research or design results in the form of a technical report or in the form of a scientific paper
7. present and defend results in a scientifically sound way, using contemporary communication tools, for a national as well as for an international professional or lay audience
9. work in an industrial environment with attention to safety, quality assurance, communication and reporting
11. think critically about and evaluate projects, systems and processes, particularly when based on incomplete, contradictory and/or redundant information

The Master in Engineering Sciences has
12. a creative, problem-solving, result-driven and evidence-based attitude, aiming at innovation and applicability in industry and society
13. a critical attitude towards one’s own results and those of others
14. consciousness of the ethical, social, environmental and economic context of his/her work and strives for sustainable solutions to engineering problems including safety and quality assurance aspects
15. the flexibility and adaptability to work in an international and/or intercultural context
16. an attitude of life-long learning as needed for the future development of his/her career

The Master in Electronics and Information Technology Engineering:
17. Has an active knowledge of the theory and applications of electronics, information and communication technology, from component up to system level.
20. Is able to analyze, specify, design, implement, test and evaluate individual electronic devices, components and algorithms, for signal-processing, communication and complex systems.
 

Beoordelingsinformatie

De beoordeling bestaat uit volgende opdrachtcategorieën:
Examen Mondeling bepaalt 50% van het eindcijfer

Examen Praktijk bepaalt 50% van het eindcijfer

Binnen de categorie Examen Mondeling dient men volgende opdrachten af te werken:

  • Q/A on report met een wegingsfactor 50 en aldus 50% van het totale eindcijfer.

Binnen de categorie Examen Praktijk dient men volgende opdrachten af te werken:

  • exam met een wegingsfactor 50 en aldus 50% van het totale eindcijfer.

Aanvullende info mbt evaluatie

An oral examination is organized.  Each student submits a report on the practical sessions at least 7 days before the date of his/her oral examination.  He/she has to answer a series of questions on this report during the oral examination.  The final mark is the average between the mark of the report and the mark of the oral examination.

Toegestane onvoldoende
Kijk in het aanvullend OER van je faculteit na of een toegestane onvoldoende mogelijk is voor dit opleidingsonderdeel.

Academische context

Deze aanbieding maakt deel uit van de volgende studieplannen:
Master in de ingenieurswetenschappen: elektronica en informatietechnologie: Standaard traject
Master of Photonics Engineering: On campus traject (enkel aangeboden in het Engels)
Master of Photonics Engineering: Online/Digital traject (enkel aangeboden in het Engels)
Master of Electrical Engineering: Standaard traject BRUFACE J (enkel aangeboden in het Engels)