4 ECTS credits
100 u studietijd

Aanbieding 1 met studiegidsnummer 4020703FNR voor alle studenten in het 2e semester met een gespecialiseerd master niveau.

Semester
2e semester
Inschrijving onder examencontract
Niet mogelijk
Beoordelingsvoet
Beoordeling (0 tot 20)
2e zittijd mogelijk
Ja
Inschrijvingsvereisten
Students must have taken ‘Neuro-engineering Science’, before they can enroll in ‘Neurophysiological signal processing and network analysis’​
Onderwijstaal
Engels
Faculteit
Faculteit Geneeskunde en Farmacie
Verantwoordelijke vakgroep en betrokken faculteiten/vakgroepen
Farmaceutische en Farmacologische Wetenschappen
Observerende klinische wetenschappen
Onderwijsteam
Guy Nagels (titularis)
Peter Van Schuerbeek
Dimitri De Bundel
Jeroen Van Schependom
Onderdelen en contacturen
28 contacturen Hoorcollege
12 contacturen Werkcolleges, practica en oefeningen
Inhoud

Electroencephalography: 3 hours of theory, 3 hours of practicals

  • Clinical applications
  • Rest EEG
  • Healthy controls, ageing controls, pathology
  • Task EEG
  • Sensory evoked potentials
  • Endogenous evoked potentials
  • Clinical and research applications
  • Current software packages for EEG and MEG analysis
  • Pipeline components for Rest EEG
  • Pipeline components for Task EEG
  • Exercises:
  • Complete processing of Rest EEG (raw data => conclusion)
  • Complete processing of Task EEG
  • Possibly a lab visit, depending on group size. During this lab visit, students can measure EEG on their peers and, under supervision, learn about recognising artefacts.

Measuring EEG in special circumstances: 3 hours of theory

  • Which artefacts occur during combined EEG/MRI measurement ?
  • Which artefacts occur in EEG measurement during movement / motor behavior studies?
  • How can we improve the signal/noise ratio in these circumstances ?

Magnetoencephalography: 3 hours of theory, 3 hours of practicals

  • Difference between EEG and MEG from biomedical perspective
  • Difference between EEG and MEG from technical-analysis perspective
  • Dimensionality of the data
  • Referenceless measurements
  • Artefact sources
  • Dimensionality of the analysis: evoked fields, time-amplitude, time-frequency
  • Sensor space vs source space
  • Clinical applications of MEG
  • Pipeline components for Rest MEG
  • Pipeline components for Task MEG
  • Exercises:
  • Single-subject analysis of resting-state MEG in OSL or SPM (sensor space and source space; time-amplitude and time-frequency)
  • Single-subject analysis of task MEG in OSL or SPM (sensor space and source space; time-amplitude and time-frequency)
  • Group level analysis of task-related MEG, explore results in FSL
  • Possibility of lab visit, depending of group size and experimental schedule.

Functionele neuroimaging techniques in animal experimentation: 3 hours of theory (Dimitri)

  •  Which physiological differences have to be taken into account when imaging rodents ?
  •  Which, potentially more invasive, imaging techniques offer additional value in animak experimentation ?      

Functional magnetic resonance, 6 hours of theory, 3 hours of practicals

The basis of MRI is explained in another course by the same lecturer. For this reason only a brief explanation about the basis of fMRI is provided here.

  • HRF physiology
  • BOLD, EPI sequence
  • Setting up your study: tasks, groupanalyses, using statistical tests, power.
  • Processing models: GLM, resting state functionan connectivity, seed based connectivity, ICA, DCA
  •  Interpretigng fMRI results, false positive and false negative results.
  • Using DTI to contrast fMRI with structural connectivity. Fibertracking.
  •  Practical:
  • Set up your own fMRI task in a computer room
  • Analyse previously recorded fMRI data in a computer room.

Network Analysis: 6 hours of theory, 3 hours of practicals

  • Understanding the concept of networks, distinction between different definitions used in biomedical literature
  • Parcellation methods, atlas-based vs data-driven
  • Edge detection: correlation, phase lag index …
  • Description of the calculated networks
  • Graphs : binary vs weighted, situating graph theory within a mathematical, social and biomedical context
  • Extraction of topological parameters, correlation with biomedical markers such as IQ
  • Use of network simulations in research on neurophysiology based graphs
  • Exercises:
  • Perform a network analysis on available data
  • Program simulations, e.g. to investigate the ‘rich-clubness’ of analysed signals

Integration of topics discussed during the course: 4 hours

  • Discuss some concrete biomedical questions
  • Discuss the translation of biomedical questions to “engineering problems”
  • Discuss the choice of imaging technique and the choice of data analysis for specific problems
  • Discuss the translation of results to an answer to the biomedical question
  • In the second part of the lecture, PhD students will present their research and students can ask critical questions under supervision of the teacher.
Bijkomende info

...

Leerresultaten

Final Competences

Students can explain strong and weak point of several functional neuroimaging techniques.

Students can apply their knowledge of functional neuroimaging techniques to example problems from the biomedical field, in a simulated interdisciplinary (engineers and biomedical scientists) experiment.

Students can discuss a research paper dealing with functional neuroimaging techniques, list strong and weak points of the paper, and suggest alternative approaches.

Beoordelingsinformatie

De beoordeling bestaat uit volgende opdrachtcategorieën:
Examen Andere bepaalt 100% van het eindcijfer

Binnen de categorie Examen Andere dient men volgende opdrachten af te werken:

  • Oral exam & part. class. sess. met een wegingsfactor 1 en aldus 100% van het totale eindcijfer.

    Toelichting: See 'Additional information on evaluation'

Aanvullende info mbt evaluatie

Oral examination in which the student discusses a research paper dealing with functional neuroimaging techniques, followed by Q&A (75%).

Participation in the interactive classical session in which topics discussed during the course are integrated (25%) 

Toegestane onvoldoende
Kijk in het aanvullend OER van je faculteit na of een toegestane onvoldoende mogelijk is voor dit opleidingsonderdeel.

Academische context

Deze aanbieding maakt deel uit van de volgende studieplannen:
Master in de ingenieurswetenschappen: biomedische ingenieurstechnieken: Standaard traject
Master of Biomedical Engineering: Startplan (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Profiel Radiation Physics (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Profiel Biomechanics and Biomaterials (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Profiel Sensors and Medical Devices (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Profiel Neuro-Engineering (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Standaard traject (NIEUW) (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Profiel Artificial intelligence and Digital Health (enkel aangeboden in het Engels)