9 ECTS credits
270 u studietijd

Aanbieding 1 met studiegidsnummer 4023200ENR voor alle studenten in het 1e semester met een verdiepend master niveau.

Semester
1e semester
Inschrijving onder examencontract
Niet mogelijk
Beoordelingsvoet
Beoordeling (0 tot 20)
2e zittijd mogelijk
Ja
Onderwijstaal
Engels
Faculteit
Faculteit Wetenschappen en Bio-ingenieurswetensch.
Verantwoordelijke vakgroep
Chemie
Onderwijsteam
Paul Geerlings
Frank De Proft (titularis)
Onderdelen en contacturen
52 contacturen Hoorcollege
39 contacturen Werkcolleges, practica en oefeningen
Inhoud

Part 1: From atomic/molecular energy levels to spectral transitions 

 

1.1. Basic notions of spectrosopy (recapitulation)) 

1.2. Atomic Spectroscopy 

  • Selection Rules for the Hydrogen Atom 

  • Energy-levels for multi-electron-atoms: influence of correlation and relativistic effects. 

  • Spectral transitions and selection rules. 

1.3. Molecular Spectroscopy: basic principles and partitioning of the molecular energy 

1.4. Vibrational energy-levels and selection rules 

  • Diatomic molecules: the harmonic model and anharmonicity corrections 

  • Polyatomic Molecules: IR and Raman spectroscopy. 

1.5. Rotational Spectroscopy 

  • Rotational energy-levels and selection-rules. 

1.6. Electronic Spectra (unsaturated systems) 

  • Huckel’s method for unsaturated systems 

  • Applications 

  • Electronic Transitions in the MO model 

1.7. Electron and nuclear spin resonance 

  • The e.s.r. experiment 

  • The NMR experiment 

 

Part 2 From energy-levels to macroscopic thermodynamic behaviour 

 

2.1. Basic principles of Statistical Mechanics: non-interacting molecules 

  • Boltzmann distribution 

  • Partition function 

  • Internal energy 

2.2. Some applications of non-interacting molecules 

  • Factorisation of the partition function 

  • Thermodynamic properties of ideal gases 

  • Equipartition theorem 

  • Partition functions for internal degrees of freedom (rotations, vibrations, electronic) 

2.3. Canonical ensemble and indistinguishability 

  • From the Canonical ensemble to thermodynamic functions 

  • The Sackur-Tetrode equation for the entropy of atoms. 

  • Equilibrium constants for ideal gases. 

 

Modelling skills 

 

1. Practical introduction to electronic structure methods with particular attention for density functional theory  

2. Computation of the electronic structure and interpretation of the results 

3. Geometry optimization: minima and saddle points (transition states 

4. Computation of spectroscopic quantities: electronic transitions, vibrational frequencies and NMR properties  

5. ab initio molecular dynamics: dynamic properties and solvent effects 

Bijkomende info

Course material: 

  • Course (Recommended): Molecular Physical chemistry, P. Geerlings F. De Proft, VUB, 2220170000725, 2016. 

  • Molecular Quantum Mechanics, P. W. Atkins and R. S. Friedman, Fifth Edition, Oxford University Press, Oxford, 2010. 

  • Matter in Equilibrium, Statistical Mechanics and Thermodynamics, R. S. Berry, S. A. Rice and J. Ross, Second Edition, 2002. 

  • Physical Chemistry, P. W. Atkins and J. De Paula, 11th Edition, Oxford University Press, Oxford, 2017. 

Leerresultaten

general competencies

The aim of the first part of this course is, starting from the energy-levels of atoms and molecules, obtained through Quantum Mechanics/Quantum Chemistry, to give insight into their fundamental role in the interpretation of atomic and molecular (rotational, vibrational, electronic) spectra. This part thereby gives further theoretical support to the course on structure determination in the Bachelor courses. 

The second part shows how these same energy-levels give access, in a statistical-mechanical context, via the partition function, to the classical thermodynamical state functions (energy, free energy, entropy, ...) and how finally equilibrium constants of chemical reactions can be evaluated. In this sense a link is drawn to the course on Thermodynamics in the Bachelor curriculum. 

 

For the modelling part of the course, the specific learning outcomes are: 

  • Students can model optical and electronic properties of molecules through density functional theory. 

  • Students can independently perform state-of-the-art density functional calculations of different properties and can correctly interpret the results 

Beoordelingsinformatie

De beoordeling bestaat uit volgende opdrachtcategorieën:
Examen Andere bepaalt 100% van het eindcijfer

Binnen de categorie Examen Andere dient men volgende opdrachten af te werken:

  • written + oral + assignment met een wegingsfactor 100 en aldus 100% van het totale eindcijfer.

Aanvullende info mbt evaluatie

80 % of the mark is given on the exam, which is composed of a written part (Problems - Open book) followed by an oral exam with written preparation (theory, closed book). This combination permits to assess physical and chemical insight, computational skill, and strength in analysis and synthesis.

20 % of the mark is given on an assignment on the molecular modelling part of the WPO 

Toegestane onvoldoende
Kijk in het aanvullend OER van je faculteit na of een toegestane onvoldoende mogelijk is voor dit opleidingsonderdeel.

Academische context

Deze aanbieding maakt deel uit van de volgende studieplannen:
Master of Chemistry: Analytical and Environmental Chemistry (enkel aangeboden in het Engels)
Master of Chemistry: Chemical Theory, (Bio)Molecular Design and Synthesis (enkel aangeboden in het Engels)