Back to top

Learning Outcomes

The Master of Science in Engineering has in-depth knowledge and understanding of 
1.    exact sciences with the specificity of their application to engineering 
2.    integrated structural design methods in the framework of a global design strategy 
3.    the advanced methods and theories to schematise and model complex problems or processes
The Master of Science in Engineering can 
4.    reformulate complex engineering problems in order to solve them (simplifying assumptions, reducing complexity) 
5.    conceive, plan and execute a research project, based on an analysis of its objectives, existing knowledge and the relevant literature, with attention to innovation and valorisation in industry and society 
6.    correctly report on research or design results in the form of a technical report or in the form of a scientific paper
7.    present and defend results in a scientifically sound way, using contemporary communication tools, for a national as well as for an international professional or lay audience 
8.    collaborate in a (multidisciplinary) team 
9.    work in an industrial environment with attention to safety, quality assurance, communication and reporting 
10.    develop, plan, execute and manage engineering projects at the level of a starting professional
11.    think critically about and evaluate projects, systems and processes, particularly when based on incomplete, contradictory and/or redundant information
The Master of Science in Engineering has 
12.    a creative, problem-solving, result-driven and evidence-based attitude, aiming at innovation and applicability in industry and society
13.    a critical attitude towards one’s own results and those of others
14.    consciousness of the ethical, social, environmental and economic context of his/her work and strives for sustainable solutions to engineering problems including safety and quality assurance aspects 
15.    the flexibility and adaptability to work in an international and/or intercultural context 
16.    an attitude of life-long learning as needed for the future development of his/her career

The Master of Science in Electrical Engineering
17.     Has an active knowledge of the theory and applications of electronics, information and communication technology, from component up to system level.
18.     Has a profound knowledge of either (i) nano- and opto-electronics and embedded systems, (ii) information and communication technology systems or (iii) measuring, modelling and control.
19.     Has a broad overview of the role of electronics, informatics and telecommunications in industry, business and society.
20.     Is able to analyse, specify, design, implement, test and evaluate individual electronic devices, components and algorithms, for signal-processing, communication and complex systems.
21.     Is able to model, simulate, measure and control electronic components and physical phenomena.
22.     Is aware of and critical about the impact of electronics, information and communication technology on society

Back to top

Academic plans

In the context of this programme, the following academic plans are offered:

Standaard traject BRUFACE J

Back to top